基于K-Means-LSTM的碾压混凝土重力坝监测数据插补方法研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TV642.2 TV697.2

基金项目:


Interpolation method for the monitoring data of roller-compacted concrete gravity dams based on K-Means-LSTM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    大坝安全监测数据的完整性对确保大坝安全运行具有重要意义。然而,在长期监测过程中不可避免地会出现数据缺失现象,这严重影响了监测数据的分析效果和预警能力。现有的缺失数据处理方法主要包括忽略法、线性插值法、空间临近点插补法和数学模型法等,但这些方法在处理复杂类型的缺失值时仍存在局限性。针对这一问题,文章提出一种基于K-Means聚类和长短期记忆网络(LSTM)的缺失插补方法。该方法突破传统统计模型因子的局限性,通过K-Means聚类自动识别具有相似变形特征的测点群组,将同簇内高相关测点的时序数据作为LSTM的输入变量,构建时空融合的缺失值预测模型,充分利用测点间的空间相关性和时间序列的长期依赖特征对监测数据中的缺失值进行插补。工程应用表明:该方法相比传统插值方法具有更好的插补精度和适用性,为大坝安全监测数据的质量控制提供了新的技术方案。

    Abstract:

    The integrity of dam safety monitoring data is crucial for ensuring the safe operation of dams.However,data loss is inevitable during long-term monitoring,severely compromising the effectiveness of data analysis and early warning capabilities.Existing methods for handling missing data such as omission,linear interpolation,spatial proximity-based imputation,and mathematical modeling still exhibit limitations when dealing with complex types of missing values.To address this issue,this paper proposes a missing data imputation method based on K-Means clustering and LSTM networks.This method overcomes the limitations of traditional statistical modeling factors by automatically identifying groups of monitoring points with similar deformation characteristics through K -Means clustering.The time-series data of highly correlated points within the same cluster are used as input variables for the LSTM model,constructing a spatiotemporal fusion-based prediction model for missing values.This approach fully leverages the spatial correlations among monitoring points and the long-term dependency features of time-series data to impute missing monitoring data.Engineering applications demonstrate that this method outperforms traditional interpolation techniques in terms of imputation accuracy and applicability,providing a novel technical solution for quality control of dam safety monitoring data.

    参考文献
    相似文献
    引证文献
引用本文

苏 航,李金键.基于K-Means-LSTM的碾压混凝土重力坝监测数据插补方法研究[J].江西水利科技,2025,(4):

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-09-11
  • 出版日期:
文章二维码