基于混沌识别SVM 组合模型的水库径流预测分析
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

P338

基金项目:


Reservoir runoff prediction based on chaos recognition SVM combination model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统径流预测方法适应性差、准确度低的问题,本文提出基于混沌识别SVM 组合模型的径流预测方法。以店下水库为例,构建混沌识别支持向量机组合预报模型,利用本方法与最大Lyapunov 指数的混沌预测模型、ANN、AR 模型三种模型进行对比分析,检验组合模型的应用效果。四种模型的评价指标结果依次为:平均相对误差12.3%<14.6%<17.8%<21.2%;确定性系数0.85、0.53、0.59、0.72;合格率90.1%>74.8%>68.9%>62.6%,因此基于混沌识别SVM 组合预测模型的水库径流预测精度与可信度最高,预测效果优于其他方法。研究成果可为店下水库径流预测提供理论依据。

    Abstract:

    Aiming at the problems of poor adaptability and low accuracy of traditional runoff prediction methods,a runoff prediction method based on chaos recognition SVM combination model is proposed.Taking Dianxia Reservoir as an example,a chaotic recognition support vector machine combination prediction model is constructed.This method is compared and analyzed with three models,i.e.the maximum Lyapunov exponent chaos prediction model,ANN,and AR models,to test the application effect of the combination model.The results showed that the average relative error evaluation indicator of the corresponding four models were 12.3%,14.6%,17.8% and 21.2%;The coefficient of certainty is 0.85,0.53,0.59 and 0.72,and the pass rate is 90.1%,74.8%,68.9% and 62.6%.Therefore,the SVM combination prediction model based on chaos recognition has the highest accuracy and credibility in predicting reservoir runoff,and the prediction effect is better than other methods.The research results can provide theoretical basis for predicting the runoff of the underground reservoir in the store.

    参考文献
    相似文献
    引证文献
引用本文

杨发军.基于混沌识别SVM 组合模型的水库径流预测分析[J].江西水利科技,2025,(1):

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-03-28
  • 出版日期:
文章二维码