基于EEMD-GWO-LSTM 的滑坡位移预测
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TU433

基金项目:


Prediction of landslide displacement based on the EEMD-GWO-LSTM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为实现滑坡位移时间序列精准预测,提出一种基于集合经验模态分解(EEMD)数据处理技术和灰狼优化(GWO)算法-长短时记忆网络(LSTM)的精细滑坡位移时序预测模型。该模型采用集合经验模态分解方法将采集得到的累计滑坡位移分解为若干个固有模态函数和1 个残余分量,将固有模态函数重构为随机性位移和周期性位移,将残余分量定义为趋势性位移。采用长短时记忆网络对随机性位移和周期性位移进行预测,引入灰狼优化算法对长短时记忆网络模型的超参数进行寻优,建立最优预测模型;依据趋势性位移发展特征,采用最小二乘法实现预测;最后,将这三类位移值进行求和即可得到累计位移预测值。以三峡库区白水河滑坡为例,验证了EEMD-GWO-LSTM 模型的可靠性。结果表明:本文提出模型的均方根误差、平均绝对误差和判定系数分别为9.82mm、8.19mm 和0.96,均优于BP 神经网络和LSTM 模型。

    Abstract:

    To achieve accurate prediction of landslide displacement,a fine landslide displacement time series prediction model based on the ensemble empirical modal decomposition(EEMD)data processing technique and the gray wolf optimization(GWO)algorithm long and short term memory(LSTM)network is proposed.The model uses the ensemble empirical modal decomposition method to decompose the collected cumulative landslide displacements into a number of intrinsic modal functions and one residual component,reconstructing the intrinsic modal functions into stochastic and periodic displacements,and defining the residual component as the trendline displacement.The long and short term memory network is used to predict the stochastic and periodic displacements,and the gray wolf optimization algorithm is introduced to optimize the hyper-parameters of the long and short term memory network model to establish the optimal prediction model.Then,based on the developmental characteristics of the trend displacement,the least squares method is used to realize the prediction.Finally,the accumulated displacement prediction can be obtained by summing the stochastic displacement,periodic displacement and trend line displacement.The reliability of the EEMD-GWO-LSTM model is verified by taking the Baishuihe landslide in the Three Gorges reservoir area as an example.The results show that the RSME,MAE and R2 of the model proposed in this paper are 9.82 mm,8.19 mm and 0.96,respectively,which are better than the BP neural network and the LSTM model.

    参考文献
    相似文献
    引证文献
引用本文

万小强,熊 威,唐少龙.基于EEMD-GWO-LSTM 的滑坡位移预测[J].江西水利科技,2024,(4):

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-10-29
  • 出版日期:
文章二维码