基于多模型组合方法的公平水库中长期入库径流预报
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

P338+.2

基金项目:


Medium and long-term inflow runoff forecast of Gongping reservoir based on multi-model combined method
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    准确可靠的水库中长期预报结果对于指导受水区水资源优化配置等具有重要意义。本文首先选取SARIMA 模型、SVM 模型、XGBoost 模型与RF 模型分别构建公平水库月入库径流预报方案,以气象因子的物理机制为基础,在成因分析与随机森林重要性排序的基础上筛选关键预报因子并输入至4 个单一模型中。然后在对比分析各模型优劣的基础上,以线性与非线性组合2 种方式构建组合预报方案。结果表明:RF 模型在4 个单一模型中的模拟结果表现最优,SARIMA 模型的模拟精度随着入库径流量的增加而增加;组合预报模型较任一单一模型的模拟结果均更好,基于神经网络的非线性组合方式能够有效提高验证期的模拟精度,增加模型的泛化能力。

    Abstract:

    Accurate and reliable medium and long-term forecast results of reservoirs are of great significance for guiding the optimal allocation of water resources in the intake area. In this paper, the SARIMA model, SVM model,XGBoost model and RF model were first selected to construct the monthly runoff forecasting scheme of the reservoir.Based on the physical mechanism of meteorological factors, the key predictors were screened on the basis of the cause analysis and random forest importance ranking and were input into four single models. Then, on the basis of comparative analysis of the advantages and disadvantages of each model, a combined forecasting scheme is constructed in two ways of linear and nonlinear combination. The results show that the simulation results of the RF model are the best among the four single models, and the simulation accuracy of the SARIMA model increases with the increase of the inflow runoff;the combined forecast model is better than any single model. The nonlinear combination of neural networks can effectively improve the simulation accuracy of the verification period and increase the generalization ability of the model.

    参考文献
    相似文献
    引证文献
引用本文

肖三明,刘 涛.基于多模型组合方法的公平水库中长期入库径流预报[J].江西水利科技,2023,(5):

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-11-15
  • 出版日期:
文章二维码