基于卷积神经网络的监控图像水位识别
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TV214

基金项目:


Water level recognition based on convolutional neural network for monitoring images
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于水尺的水位监测由于其廉价和便携的特点而得到广泛应用。然而,在复杂的实际水文场景中,如何从水尺图像中准确检测水位仍然是一个棘手的问题。本文提出了一种水位测量的复合方法。与传统方法不同,该方法可以从复杂多变的场景中检测出水位的位置和数量,然后从变化的水位中准确地分割出水位线,最终得到准确的水位值。该方法首先通过上下文调整模块改进了FCOS 模型,以满足边缘计算的要求,并保证了比较高的检测精度。其次,为了模块化语义关系,应用Deeplab-v3 的上下文校正模块来分割水尺图像的水面以上区域,被分割的区域可以用来计算水位线的位置。最后,结合所有的结果来计算水尺图像的水位值。实验证明:本文提出的复合方法,解决了复杂水文场景下的水尺水位计算问题,计算的水位误差已经精确到1 厘米,大大优于现有的方法。

    Abstract:

    Water level monitoring based on water gauge is widely used due to its cheap and portable features. However,it is still a tricky problem to accurately detect the water level from water gauge images in complex real-world hydrological scenarios. In this paper, we propose a composite method for water level measurement.Being different from the traditional methods, this method can detect the location and quantity of water level in the complex and changing scenes, and then accurately segment the water level line from the changing water level, and finally get the accurate water level value. Firstly, we improve the FCOS model by the context adjustment module to meet the requirements of edge computing and ensure a relatively high detection accuracy. Secondly, to modularize the semantic relationships, we apply the contextual adjustment module of Deeplab-v3 to segment the water gauge image above its water surface. Then,the segmented region can be used to calculate the position of the water level line. Finally, we combine all the results to calculate the water level value of the water gauge image. The experimental results demonstrate that the method solves the problem of calculating the water level of the water gauge in complex hydrological scenarios. In addition, the water level error calculated by the method has been accurate to 1 cm, which is much better than the existing methods.

    参考文献
    相似文献
    引证文献
引用本文

王述强,张 飞,艾小坚.基于卷积神经网络的监控图像水位识别[J].江西水利科技,2023,(5):

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-11-15
  • 出版日期:
文章二维码