图神经网络驱动的流域洪水预报技术
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP183

基金项目:


Graph neural network driven technology for forcasting floods in basins
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    本研究提出了一个图指导的时空关联预报模型(GSCPM,graph-guided spatiotemporal correlation prediction model),针对性地解决流域洪水预报中的时空关系建模和滞后影响问题。该模型通过多个长短期记忆网络(LSTM)编码每个监测点历史属性的时间关联特征,随后利用图卷积神经网络(GCN)挖掘监测点间的地理空间依赖。此外,提出了雨量滞后特征、泄洪量滞后特征和上游水位滞后特征用以挖掘变量滞后效应。本文在现实流域数据集上进行了广泛的实验,通过跟LSTM、RNN 等模型的比较,证明了GSCPM 模型的优越性,适合在流域洪水预报中推广使用。

    Abstract:

    In this study, a graph guided spatiotemporal correlation prediction model (GSCPM) is proposed to solve the problem of spatiotemporal relationship modeling and lag impact in watershed flood prediction. The model encodes the time correlation of the historical attributes of each monitoring point through multiple long and short-term memory networks (LSTM), then uses graph convolution neural network (GCN) to find the geographic and spatial dependencies between detection points. In addition, we propose rainfall delay features, flood discharge delay features and upstream water level delay features to find the lag effects between variables, and perform extensive experiments on real-world watershed dataset.The experimental results demonstrate that the GSCPM model is superior to LSTM, RNN and other models, which is suitable to be widely used in watershed flood prediction.

    参考文献
    相似文献
    引证文献
引用本文

马森标.图神经网络驱动的流域洪水预报技术[J].江西水利科技,2023,(5):

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-11-15
  • 出版日期:
文章二维码