基于生成对抗网络的水尺传感器图像增强
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TV214

基金项目:


Image enhancement of water gauge sensor based on generated confrontation network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于水尺的水位监测因其成本低廉、携带方便等优点而得到了广泛的应用。然而,由于水尺图像数据集的缺乏和目前已知数据集的质量相对较低,本文提出了一种上下文调整GAN(CA-GAN)。实验数据表明,CA-GAN 生成图像质量高,尺度丰富,种类多,生成时间短。生成的图像数据可为基于深度学习的水位尺等应用提供图像数据。本文利用分割图设计了一种新的语义激活调制下采样方案;采用了基于下采样模块的Unet++结构。并设计了相邻层间的上下文调整方案。实验结果表明:本文所提出的下采样模块和密集上下文调整模块对水尺图像语义信息的维护有显著的帮助;与CoGAN、Sim-GAN 和CycleGAN 模型相比,CA-GAN 生成的水体图像能够提高深度网络的测量精度,且其使生成的水尺图像的每像素准确率提高了17%。

    Abstract:

    Water level monitoring based on water gauge has been widely used because of its low cost and portability.However, due to the lack of water-scale image data sets and the relatively low quality of currently known data sets, a context-adjusted GAN(CA-GAN)is proposed in this paper. The experimental results show that CA-GAN images are of high quality,rich in scale and variety, and short generation time. The generated image data can provide image data for water level gauge and other applications based on deep learning. This study designs a new downsampling scheme with semantic activation and modulation by using the segmentation graph and Unet++ structure based on downsampling module is adopted. Meanwile, a context adjustment scheme between adjacent layers is designed in the study. The results show that the proposed downsampling module and intensive context adjustment module are significantly helpful to maintain the semantic information of water gauge images. Compared with CoGAN, SimGAN and CycleGAN models,the water image generated by CA-GAN can improve the measurement accuracy of deep network. In addition, CA-GAN model improves the accuracy of the generated water gauge image by 17% per pixel.

    参考文献
    相似文献
    引证文献
引用本文

罗 莹,张思金,冯 时.基于生成对抗网络的水尺传感器图像增强[J].江西水利科技,2023,(4):

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-09-13
  • 出版日期:
文章二维码