基于LSTM 神经网络模型的灞河流域径流预报研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

X824

基金项目:


Research on runoff forecast of Bahe river basin based on LSTM neural network model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    径流预报是缓解洪水的一种重要方法。基于1978-2010 年的水文资料,结合长短期记忆神经网络(Long-Short Term Memory,LSTM),构建了灞河流域径流预测模型,并且评价了模型对同一流域不同特征水文站的差异及不同季度的预测效果差异。结果表明:不同神经元的组合,对LSTM 模型预测效果会产生影响,利用最佳的神经元组合可以更加有效预测径流量变化,大峪河大峪(三)站的最佳组合为第一层神经元128 个,第二层神经元32 个;灞河罗李村(四)站的最佳组合为第一层神经元128 个,第二层神经元8 个;灞河马渡王站的最佳组合为第一层神经元8 个,第二层神经元2 个。不同站点的LSTM 最佳模型都能较为有效的预测三个水文站2006-2010 年的径流量变化,其中大峪河大峪(三)站效果最佳,其余两个站点效果相对较差。LSTM 模型对各个季度的预测效果有差异,各个站点大部分第三季度的均方根误差都较大,而对第一、四季度的径流预测相对较准确。

    Abstract:

    Runoff forecasting is an important method to alleviate floods. Based on hydrological data from 1978 to 2010,combined with Long-Short Term Memory (LSTM), a runoff prediction model for the Bahe river basin was constructed.The results show that the combination of different neurons has an impact on the prediction effect of the LSTM model.Using the best combination of neurons can more effectively predict the change in runoff. The best model of Yuhe Dayu(the third) station is an LSTM model with 128 neurons in the first layer and 32 neurons in the second layer. The best model of the Bahe Luoli village (the fourth) station is an LSTM model with 128 neurons in the first layer and 8 neurons in the second layer. The best model of Bahe Maduwang station is an LSTM model with 8 neurons in the first layer and 2 neurons in the second layer. The best LSTM models at different sites can effectively predict the runoff changes of the three hydrological stations from 2006 to 2010. Among them, Dayuhe Dayu (the third) station has the best effect, while the other two stations have relatively poor results. There are differences in the forecasting effects of LSTM model for each quarter. The root mean square error of each site in the third quarter is relatively large, while the runoff forecasts for the first and fourth quarter are relatively accurate.

    参考文献
    相似文献
    引证文献
引用本文

刘红学,翁茂峰,刘益晓.基于LSTM 神经网络模型的灞河流域径流预报研究[J].江西水利科技,2023,(3):

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-07-14
  • 出版日期:
文章二维码