水利工程机电设备故障细化诊断与智能运维方法研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TD407 TD607

基金项目:


Research on detailed fault diagnosis and intelligent operation and maintenance of electromechanical equipment in water conservancy projects
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    当前水利工程机电设备的主流运维技术已从自动化运维向智能化运维发展,利用人工智能来辅助甚至部分替代人工决策,可以进一步提升水利运维的质量和效率。针对设备实际运行中出现的故障,提出一种基于深度学习和余弦相似度相融合的故障细化诊断方法。首先采用深度学习的方法进行当前故障的识别和分类,在此基础上,依据分类结果,采用基于TF-IDF的余弦相似度算法,通过故障现象文本的相似度匹配作进一步的细化诊断,最后再根据故障细化诊断结果开展后续的运维工作。以变压器故障为例的实验结果表明,该方法诊断性能良好,适合推广应用。

    Abstract:

    At present,the mainstream operation and maintenance technology of electromechanical equipment in water conservancy projects has developed from automatic operation and maintenance to intelligent operation and maintenance.Using artificial intelligence to assist or even partially replace manual decision-making can further improve the quality and efficiency of water conservancy operation and maintenance.A detailed fault diagnosis method based on deep learning and cosine similarity is proposed for the faults occurring in practical operation of equipment.Firstly,the deep learning method is used to identify and classify the current fault.On this basis,according to the classification results,the cosine similarity algorithm based on TF-IDF is used to further refine the diagnosis through the similarity matching of fault phenomenon text.Finally,the follow-up operation and maintenance work is carried out according to the fault refinement diagnosis results.Taking transformer fault as an example,the experimental results show that this method has good diagnostic performance and is suitable for popularization and application.

    参考文献
    相似文献
    引证文献
引用本文

徐晓莉,刘 哲,钮月磊,李书明.水利工程机电设备故障细化诊断与智能运维方法研究[J].江西水利科技,2023,(1):

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-03-09
  • 出版日期:
文章二维码