基于PSO-SVR-LSTM水位预测模型研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391.9

基金项目:


Research on water level prediction model based on PSO-SVR-LSTM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    河流的水位变化受到众多复杂因素的影响,水位数据不仅显现非线性特点还具有时序性和复杂性等特点。水位预测的精度提高对河道管理、水利建设、水资源调度、防洪减灾和航运安全等方面具有重大意义。本文利用长短时记忆神经网络(LSTM)在处理长时间序列问题上的优势和支持向量回归机(SVR)能够很好地处理非线性数据的优势以及粒子群优化算法(PSO)自适应全局搜索的优势,提出了将PSO-SVR-LSTM组合模型应用于南昌市潦水万家埠段的水位预测中。仿真实验结果表明:相对于LSTM模型、SVR模型和BP等模型,本文提出的PSO-SVR-LSTM模型的预测精确度更高。

    Abstract:

    The change of river water level is affected by many complex factors.The water level data not only shows nonlinear characteristics,but also features with time sequence and complexity.Improving the accuracy of water level prediction is of great significance to river management,water conservancy construction,water resources scheduling,flood control and disaster reduction,and shipping safety.This paper makes use of the advantages of long-term memory neural network (LSTM)in dealing with long-time series problems,the advantages of support vector regression(SVR)in dealing with nonlinear data,and the advantages of particle swarm optimization(PSO)in adaptive global search.The pso-svr-lstm combination model is applied to the water level prediction of WanJiaBu section of Xiuhe river.The simulation results show that the prediction accuracy of the proposed pso-svr-lstm model is higher than that of LSTM model,SVR model and BP model.

    参考文献
    相似文献
    引证文献
引用本文

顾乾晖,胡 翌,涂振宇.基于PSO-SVR-LSTM水位预测模型研究[J].江西水利科技,2021,(4):

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-09-13
  • 出版日期:
文章二维码