基于马氏距离-数据融合的水电机组运行研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TK730.8

基金项目:


Research on hydropower unit operation based on mahalanobis distance-data fusion
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对水电机组状态监测传感器读数的精确性以及其数据波动影响机组故障诊断准确性和复杂性的问题,提出基于马氏距离-数据融合的方法,主要进行水电机组运行状态的研究与识别.该方法以马氏距离为计算基础,将连续时间段内水电机组多传感器数据进行融合,根据所得计算结果值结合机组实际运行情况分析指标值波动,达到识别机组正常与故障运行状态的目的,并将此方法与基于单传感器数据和基于欧氏距离的数据融合方法进行对比分析.结果表明:基于马氏距离-数据融合的方法在时效性与准确性上更为优异,可更直观、准确、高效地识别机组运行状态,对机组实际运行具有显著工程意义.

    Abstract:

    Aiming at the problem that the accuracy of hydroelectric generating unit condition monitoring sensor readings and its data fluctuations affect the accuracy and complexity of unit fault diagnosis,a method based on mahalanobis distance-data fusion is proposed,mainly to study and identify the operating state of hydroelectric generating units.This method uses the mahalanobis distance as the calculation basis,fuse the multi-sensor data of the hydropower unit in the continuous time period,and analyze the fluctuation of the index value according to the obtained calculation result value and the actual operation condition of the unit,to achieve the purpose of identifying the normal and faulty operation state of the unit.This method is compared with the data fusion method based on single sensor data and euclidean distance.The results show that the method based on Mahalanobis distance is more excellent in terms of timeliness and accuracy,can more intuitively,accurately and efficiently identify the operating state of the unit,and has significant engineering significance for the actual operation of the unit.

    参考文献
    相似文献
    引证文献
引用本文

谭丕成,罗正亮,潘 虹,张雁靖.基于马氏距离-数据融合的水电机组运行研究[J].江西水利科技,2020,(6):

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-01-22
  • 出版日期:
文章二维码