基于自学习高斯过程回归模型的土石坝非饱和渗流稳定概率分析
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TV221.2

基金项目:


Probabilistic analysis of unsaturated seepage stability in embankment based on self-learning Gaussian Process Regression model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对目前非饱和土石坝渗流稳定概率分析研究中的不足,文章提出了一种结合自学习策略与高斯过程回归模型(GPR)的土石坝渗流稳定概率分析方法。通过考虑土石坝两种材料参数的变异性,利用GPR 模型构建土石坝随机输入变量与最小安全系数(FSmin)之间的关系,并采用主动学习策略确定最优训练样本数量,从而有效提高计算效率。通过某土石坝验证可知,该方法与传统蒙特卡洛模拟(MCS)相比,计算效率提升约125 倍。该方法为考虑不确定性因素的土石坝非饱和渗流稳定性分析提供了一种高效而准确的工具。

    Abstract:

    To address the current research limitations in the probabilistic stability analysis of unsaturated embankments,this study proposes a novel probabilistic analysis approach for embankments stability,combining a selflearning strategy with the Gaussian Process Regression(GPR)model. By considering the variabilities of soil parameters within embankment,the GPR model was used to establish the relationship between the random input variables and the minimum safety factor(FSmin)of embankment. An active learning strategy was employed to determine the optimal number of training samples,thereby significantly enhancing the computational efficiency. Validation through an embankment case demonstrates that the proposed method achieves a computational efficiency approximately 125 times higher than traditional Monte Carlo Simulations(MCS)method. The proposed method provides an efficient and accurate tool for the probabilistic analysis of unsaturated embankments stability,accounting for uncertainty factors.

    参考文献
    相似文献
    引证文献
引用本文

朱国星.基于自学习高斯过程回归模型的土石坝非饱和渗流稳定概率分析[J].江西水利科技,2025,(2):

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-06-12
  • 出版日期:
文章二维码